Global magnetohydrodynamical models of turbulence in protoplanetary disks I. A cylindrical potential on a Cartesian grid and transport of solids
نویسنده
چکیده
Aims. We present global 3D MHD simulations of disks of gas and solids, aiming at developing models that can be used to study various scenarios of planet formation and planet-disk interaction in turbulent accretion disks. Methods. We employ the PENCIL CODE, a 3D high-order finite-difference MHD code using Cartesian coordinates. We solve the equations of ideal MHD with a local isothermal equation of state. Planets and stars are treated as particles evolved with an N-body scheme. Solid boulders are treated as individual superparticles that couple to the gas through a drag force that is linear in the local relative velocity between gas and particle. Results. We find that Cartesian grids are well-suited for accretion disk problems. The disk-in-a-box models based on Cartesian grids presented here develop and sustain MHD turbulence, in good agreement with published results achieved with cylindrical codes.We investigate the dependence of the magnetorotational instability on disk scale height, finding evidence that the turbulence generated by the magnetorotational instability grows with thermal pressure. The turbulent stresses depend on the thermal pressure obeying a power law of 0.24± 0.03, compatible with the value of 0.25 found in shearing box calculations. The ratio of Maxwell to Reynolds stresses decreases with increasing temperature, dropping from 5 to 1 when the sound speed was raised by a factor 4, maintaing the same field strength. We also study the dynamics of solid boulders in the hydromagnetic turbulence, by making use of 106 Lagrangian particles embedded in the Eulerian grid. The effective diffusion provided by the turbulence prevents settling of the solids in a infinitesimally thin layer, forming instead a layer of solids of finite vertical thickness. The measured scale height of this diffusion-supported layer of solids implies turbulent vertical diffusion coefficients with globally averaged Schmidt numbers of 1.0±0.2 for a model with α ≈ 10−3 and 0.78±0.06 for a model with α ≈ 10−1. That is, the vertical turbulent diffusion acting on the solids phase is comparable to the turbulent viscosity acting on the gas phase. The average bulk density of solids in the turbulent flow is quite low (ρp=6.0 × 10−11 kgm−3), but in the high pressure regions, significant overdensities are observed, where the solid-to-gas ratio reached values as great as 85, corresponding to 4 orders of magnitude higher than the initial interstellar value of 0.01
منابع مشابه
Global models of turbulence in protoplanetary disks I. A cylindrical potential on a Cartesian grid and transport of solids
Aims. We present global 3DMHD simulations of disks of gas and solids, aiming at developing models that can be used to study various scenarios of planet formation and planet-disk interaction in turbulent accretion disks. A second goal is to demonstrate that Cartesian codes are comparable to cylindrical and spherical ones in handling the magnetohydrodynamics of the disk simulations while offering...
متن کاملProtoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods
We present local simulations that verify the linear streaming instability that arises from aerodynamic coupling between solids and gas in protoplanetary disks. This robust instability creates enhancements in the particle density in order to tap the free energy of the relative drift between solids and gas, generated by the radial pressure gradient of the disk. We confirm the analytic growth rate...
متن کاملParticle Pile-ups and Planetesimal Formation
Solid particles in protoplanetary disks that are sufficiently super-solar in metallicity overcome turbulence generated by vertical shear to gravitationally condense into planetesimals. Super-solar metallicities result if solid particles pile up as they migrate starward due to aerodynamic drag. Previous analyses of aerodynamic drift rates that account for mean flow differences between gas and pa...
متن کاملPlanetesimal Formation without Thresholds. Ii: Gravitational Instability of Solids in Turbulent Protoplanetary Disks
We show that small solids in low mass, turbulent protoplanetary disks collect into self-gravitating rings. Growth is faster than disk lifetimes and radial drift times for moderately strong turbulence, characterized by dimensionless diffusivities, αg . 10 —10 when particles are mm-sized. This range reflects a strong dependance on disk models. Growth is faster for higher particle surface densitie...
متن کاملPlanetesimal Formation without Thresholds. I: Dissipative Gravitational Instabilities and Particle Stirring by Turbulence
We analyze the gravitational collapse of solids subject to gas drag in a protoplanetary disk. We also study the stirring of solids by turbulent fluctuations to determine the velocity dispersion and thickness of the midplane particle layer. The usual thresholds for determining gravitational instability in disks, Toomre’s criterion and/or the Roche density, do not apply. Dissipation of angular mo...
متن کامل